Gainsaying Ancient Indian Science

Meera Nanda moves on to the notion that “Bharat gave zero to the world,” which she calls “the sacred cow of Hindu sciences.”

Published: 14th October 2016 08:56 AM  |   Last Updated: 01st November 2016 12:23 PM   |  A+A-

(The article’s second and concluding part; it was abridged for the print edition.)

The Zero and the Decimal Place-Value System

Meera Nanda moves on to the notion that “Bharat gave zero to the world,” which she calls “the sacred cow of Hindu sciences.” Her all-too-predictable line is that China is the likeliest source for both the concept of zero and the positional decimal system of numeral notation. That system — the one the whole world uses today — is technically called “decimal place-value system of numeral notation,” since the value of a numeral depends on its place: 261 is not the same as 621 (whereas the value of XXIII, 23 in Roman numbers, does not change if the two Xs are switched: it is not a positional system).
Nanda cites Needham (who wrote on Chinese mathematics in 1959) and a more recent scholar, Lam Lay Yong, to suggest the “possibility of the South-East Asian transmission of zero from China.” She complains that Lam’s “rigorously argued and evidence-backed thesis” has met with a “deafening silence” in India. What are the “rigorous arguments,” then?
First, “the absence of place value in Indian numerals until around the sixth century of the Common Era, and secondly, [the fact] that the first physical evidence of zero comes not from India but from Cambodia [in 683 ce] and other South-East Asian countries that lie between India and China.” Nanda combines the second point with Needham’s and Lam’s thesis to argue that the mathematical zero is traceable to China, not India. 
There is nothing wrong in giving credit where credit is due, and ancient Chinese civilization did witness brilliant advances in mathematics and other sciences, not to speak of technologies, often far ahead of the rest of the world. As it happens, however, Nanda’s two arguments can only be maintained by sweeping under the (Chinese silk) carpet a mountain of evidence. Needham could be excused for advancing them six decades ago (far more tentatively and detachedly than does Nanda), but fresh material has come to light since his pioneering research, all of which Nanda ignores. The work of epigraphists and historians of science, both Indian and non-Indian, all of it equally “rigorously argued and evidence-backed,” now permits a definite answer. 
As a complete survey of the evidence would easily fill a thick tome (the French historian of mathematics, George Ifrah, devotes over 200 pages of his monumental Universal History of Numbers to the Indian systems and the zero), I will restrict myself to a few instances (and can supply references on request). Let us begin with three inscriptions deciphered by D.C. Sircar, from all accounts the greatest post-Independence authority on Indian epigraphy:

The Mankuwar Buddha image stone inscription of 428 ce includes a “small globular symbol” representing zero. This is not a positional context, however: zero here acts as a mere place-holder. 
The Dabok stone inscription (near Udaipur, Rajasthan) bears the date of “701” (in the Vikrama Samvat era, that is, 644 ce), again not in a true positional fashion, but with a symbol for 700 followed by a dot (zero as a place-holder) and 1.

The Khandela stone inscription of Rajasthan gives its date as “201”, now in the proper positional system, and with a small circle for the zero. Sircar applied the date to the Harsha era, which yielded 807 ce.
The Mankuwar and Dabok inscriptions, both of which antedate the Cambodian inscription of 683 ce, are conclusive epigraphic evidence for an early use of the symbol for zero in India (initially in non-positional systems). Even the common notion, relayed by Nanda, that the zero in a positional context is first depicted in India in the Gwalior inscription of 876 ce is belied by the Khandela inscription.

Besides, the famous Bakhshāli manuscript, a mathematical work dated to the 7th century ce by the Japanese scholar Takao Hayashi, author of the most thorough study on it (of course, others have proposed older as well as more recent dates), manipulates numbers in the decimal place-value system, with the zero represented as a dot.
In fact, many more inscriptions bearing a symbol for the zero (always a bindu or small circle) predate the Cambodian one. I have not listed them as they are on copper plates, and according to Nanda, “many of [the copper landgrant plates] have been later proven to be fake.” The trick of declaring “many” (how many?) copper-plate inscriptions “fake” has long been resorted to whenever their dates proved inconvenient to the prevailing theories — but the said “fakeness” is almost never “proven”; it is no more than a matter of opinion. That is what happened to the well-known copper-plate inscription of Sankheda (Bharuch), which records its date as “346” in a local era, equivalent to 596 ce. Its authenticity was questioned but, as Bibhutibhushan Datta (with A.N. Singh) and Ifrah independently explained at length, without valid ground. In any case, stone inscriptions such as the above cannot be faked.
Ifrah’s conclusion as regards the epigraphic evidence is categorical: “There exist very numerous records [other than the Sankheda inscription] of perfect authenticity which prove beyond dispute that the zero and the positional decimal numeral system are definitely — and solely — of Indian origin, and that its discovery goes back to a far more ancient period than the oldest known inscription on a copper plate.”

Are Inscriptions the Only Evidence?

The strongest evidence is however not of epigraphic nature. Consider:

The system of computation found in Pingala’s Chhandasūtra (variously dated between 400 and 200 bce), a set of rules on Sanskrit prosody, used a binary system to classify all possible metres (no numerals are involved, let us note, only Sanskrit letters and syllables). In the course of the calculations, which demand a place-value notation, Pingala refers to the symbol for shūnya or zero, which, as the historian of science S.R. Sarma demonstrated, had to be an integral part of the system. This does seem to be its conceptual origin, after which it took a whole millennium to be worked out with numerals and to spread across the subcontinent, and beyond.

The Buddhist philosopher Vasumitra (1st century ce) wrote, “When [the same] clay counting-piece is in the place of units, it is denoted as one, when in hundreds, one hundred, when in thousands, a thousand,” which is plainly a positional system of counting. A few Jain savants between 100 bce and 100 ce have been credited with similar statements, but more research is required to bring out their contributions. Vyāsabhāshya, before 400 ce, made a statement similar to Vasumitra’s: “The same stroke [i.e., numeral 1] denotes 100 in the hundreds place, 10 in tens place and 1 in units place.”

Sphujidhvaja’s Yavana Jātaka, an adaptation of a Greek work on astrology, gives its own date in a system called bhūta-samkhyā which is strictly equivalent to the decimal positional system; the date is 191 of the Shaka era, that is, 269 ce. Concludes Kim Plofker, “Evidently, then, positional decimal numerals were a familiar concept at least by the middle of the third century, at least to the audience for astronomical and astrological texts.”

Lokavibhāga, a Jain text of 458 ce, explicitly uses (with words rather than numerals) the modern place-value system along with zero.

Āryabhata, who wrote his celebrated Āryabhatīya about 500 ce, spelt out a number of rules for mathematical and astronomical applications. Although he created his own semi-positional system of numeral notation based on Sanskrit syllables, that system will not work for the algorithms he formulated for the extraction of square and cube roots instance, among other procedures: only the full-fledged place-value system with zero, as we know it today, will work with such algorithms. This was briefly noted two decades ago by the current Indian doyen of historians of science, R.C. Gupta, then was amplified by Ifrah, who offered a rigorous mathematical proof of this, which anyone familiar with school-level maths can follow. This is irrefutable evidence that the modern system was well known to the Indian scientific community in the 5th century ce.

Subandhu, in his Vāsavadattā of the 6th or 7th century ce (but often dated two or three centuries earlier), compared stars to shūnya bindus, that is, “zero dots”.
Finally, in 662 ce, the Syrian bishop Severus Sebokht wrote about “the science of the Indians ... their subtle discoveries in astronomy, discoveries that are more ingenious than those of the Greeks and the Babylonians, and their valuable methods of calculation which surpass description ... done by means of nine signs.” This is a clear reference to the place-value system, which will not permit “valuable methods of calculation” without the integration of zero. Why should a Christian bishop go out of his way to acknowledge the scientific advances of “Pagans” if there was not good ground to do so? Let us note the date, 221 years before the Cambodia inscription.
I wonder why Nanda is “deafeningly silent” about such incontrovertible evidence, some of which was discussed as early as in 1929 by the U.S. Sanskritist W.E. Clark. Even the highly conservative historian of Indian astronomy David Pingree conceded that “there is evidence in Buddhist and Jaina texts of uncertain date, but near the beginning of the Common Era, that a decimal place-value system was in use, but there is no certain evidence that a symbol for zero was in place before the fifth century A.D.” As we saw, the second part of his statement can arguably be pushed back by two or three centuries, but it is good enough for our present purpose. 

From India to China?

Desperate to somehow connect the issue to Hindutva propaganda (apparently Sangh Parivar hotheads discuss the “sacred cow” of the numeral system everyday at breakfast), Meera Nanda makes it appear as a recent one. In reality, the debate of the origins of the place-value numeral system and the zero goes back well over a century and initially was conducted wholly among Western scholars. Leaving aside Alexander Wylie, who wrote in 1897, let me come to the British scholar G.R. Kaye, author of studies on Indian mathematics and astronomy and a strong proponent of the colonial prejudices that Indians could have created no science of their own: it had to be always derivative, borrowed the Greeks, the Persians or the Chinese. As a result he declared all early Indian inscriptions to be “fakes” and insisted that the place-value system originated in Southeast Asia under Chinese influence and travelled thence to India — a thesis he first formulated in 1907, and which is almost verbatim Nanda’s. A couple of decades later, the French scholar George Coedès, revered as the “unchallenged dean of Southeast Asian classical scholarship” and author of numerous volumes of inscriptions from all “Hinduized states of Southeast Asia,” as he called them, gently rebuked Kaye for his “strange opinion” and plainly favoured an Indian origin.
In fact, according to Needham himself, “The circular symbol for zero is first found in print in the Su Shu Chiu Chang of Chhin Chiu-Shao (+ 1247), but many have believed that it was in use already during the preceding century at least.” Thus the Chinese depiction of the zero is not only centuries later than the Indian inscriptions we saw above; it is also some 500 years more recent than the Cambodia inscription Nanda makes so much of: if the latter is evidence of Chinese influence, as she argues, why do we not have much earlier depictions of the zero in China itself?
And while Nanda is so sensitive to unnamed “Hinducentric historians,” she ought to know that Chinese scholars are far more nationalistic as a rule than their Indian counterparts. This is the case of Lam Lay Yong cited by Nanda; Lam’s theory of the Chinese origin of the place-value system is neither “rigorous” nor “evidence-based,” as she completely ignores the Indian evidence (as a glance at the bibliography of the revised 2004 edition of her Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra in Ancient China, co-authored with Ang Tian Se, will show). Lam is no doubt a sound scholar of early Chinese mathematics, but she is ill-qualified for crosscultural studies, which is why her thesis, first propounded over 30 years ago, has met with no growing acceptance, despite to Nanda’s assertion to the contrary.
Indeed, in a review of their book, the noted Sinologist Jean-Claude Martzloff was critical of Lam’s and Ang’s approach as regards India: referring to the early Tang dynasty or 7th century ce as “a period of intense contacts between China and India (where the concept of zero in its written form was already developed),” Martzloff pointed out that “Chinese translations of Indian mathematical and astronomical texts were made at this time and one of these, dated 712 AD, mentions precisely an Indian written zero in the form of a small dot. This aspect of the question is well documented, and certain of these translations have even survived. Still more significantly, the representation of numbers in Chinese Buddhist literature is often borrowed from Indian culture, especially in the form of phonetical transliterations of Sanskrit words into Chinese. Conversely, as far as I know, Chinese mathematical terms have never been detected in Indian or Islamic technical literature. Unfortunately, these aspects of the problem are passed over in silence in Fleeting Footsteps.”
That is the crux of the whole issue: while no positive evidence of Chinese transmission to India exists as far as the number system is concerned, there is plenty in the opposite direction, as many scholars have documented. But even a brief survey of India’s contributions to Chinese mathematics would require another longish article, and it is now time to rest my case.

Concluding Thoughts

First, let me clarify that I have not attempted to prove that India “invented the zero,” as is often and wrongly stated. The Mesopotamians, the Mayans and the Chinese all had some concept of a zero, mostly as a place-holder (just as it was used in India before the place-value system spread across the subcontinent). India’s unique contribution, as explained by Ifrah with meticulous care, was to integrate the zero in a positional system, in a way that zero now became a mathematical operator. Again, let us give credit where credit is due.
Secondly, there is no need to be obsessed with “priority,” unless clear evidence is available, much less with supposed “superiority”. There is also nothing wrong in discussing the occasional errors of Indian savants (Āryabhata, for instance, gives wrong formulas for the volume of the pyramid and the sphere; his diameters for the planets and the sun are also far too small). Indian mathematics rests on many well-documented breakthroughs from the Shulbasūtras to the Kerala School, especially in geometry, algebra and calculus; that is more than sufficient. Indian students, if those breakthroughs were not inexplicably concealed from them, would have a better and more intelligent appreciation of their country’s intellectual history.
Meera Nanda, clearly, wants none of this to happen. She is no doubt entitled to her opinions, neo-colonial prejudices and even pet hates, but disregarding or concealing all material that runs counter to one’s choices is poor scholarship. Worse, misleading the lay public into believing that the genuine accomplishments of early and classical Indian mathematics and astronomy are no more than Hindutva-created fictions reflects a jaundiced view of the whole field which not even the most contemptuous colonial scholar would have dreamt of. The mind boggles, and I wonder what Nanda’s next targets will be. I wish her well in her explorations, but hope she will first study basic research methodology, without which no scholarly work can endure.


Note: Except for long vowels, I have made no attempt to use standard diacritics for Sanskrit words, opting instead for spellings closer to their actual pronunciation. “bce” and “ce” stand for “Before Common Era” (or BC) and “Common Era” (AD). I am thankful to Dr. M.D. Srinivas for a few inputs on Bhāskarāchārya’s treatment of the so-called Pythagoras theorem and on Lam Lay Yong’s work.


Michel Danino’s main interests lie in Indian protohistory and the history of Indian science and technology; he has also authored a few papers and educational modules on the latter. He teaches at IIT Gandhinagar and is a member of ICHR. Email:


Disclaimer : We respect your thoughts and views! But we need to be judicious while moderating your comments. All the comments will be moderated by the editorial. Abstain from posting comments that are obscene, defamatory or inflammatory, and do not indulge in personal attacks. Try to avoid outside hyperlinks inside the comment. Help us delete comments that do not follow these guidelines.

The views expressed in comments published on are those of the comment writers alone. They do not represent the views or opinions of or its staff, nor do they represent the views or opinions of The New Indian Express Group, or any entity of, or affiliated with, The New Indian Express Group. reserves the right to take any or all comments down at any time.

flipboard facebook twitter whatsapp